МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой Медицинской биохимии и микробиологии

> 7.Н. Попова 02.07.2021г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.02 Молекулярные основы развития патологических процессов

1. Шифр и наименование специальности: 30.05.01 Медицинская биохимия

2. Специализация: Медицинская биохимия

3. Квалификация выпускника: врач-биохимик

4. Форма образования: Очная

5. Кафедра, отвечающая за реализацию дисциплины:

кафедра медицинской биохимии и микробиологии

6. Составители программы:

Попова Т.Н., д.б.н., профессор; Семенихина А.В., к.б.н., доцент; Рахманова Т.И., к.б.н., доцент; Агарков А.А., к.б.н., доцент

7. Рекомендована:

научно-методическим советом медико-биологического факультета от 23.06.2021 протокол № 5

8. Учебный год: 2021/2022 Семестр: 8

9. Цели и задачи учебной дисциплины:

Целью изучения данной дисциплины при подготовке специалистов является формирование представления о молекулярных основах развития патологических процессов и роли свободнорадикальных процессов в нормальной жизнедеятельности организма, а также их патофизиологических и токсикологических аспектах действия. Задачи - обеспечить формирование у студента в результате изучения данного курса:

- знаний о молекулярных механизмах заболеваний, в том числе обусловленных нарушениями метаболизма и сопряженных с изменением интенсивности свободнорадикальных процессов;
- знаний о молекулярных механизмах генерации активных форм кислорода в организме человека и животных;
- знаний о молекулярной структуре, механизмах действия и путях регуляции основных антиоксидантных систем организма;
- умения оперировать основными биохимическими понятиями и терминологией при изложении теоретических основ предмета;
- понимания принципов основных методов оценки интенсивности свободнорадикальных процессов в биосубстратах при патологических состояниях, сопровождающихся изменениями уровня ферментативного и неферментативного звеньев антиоксидантной защиты организма человека;
- знаний о применении методов контроля эффективности функционирования антиоксидантной системы в медицине и научных исследованиях;

10. Место учебной дисциплины в структуре ООП:

Учебная дисциплина «Молекулярные основы развития патологических процессов» является обязательной дисциплиной вариативной части Блока 1 "Дисциплины (модули)" программы специалитета.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

морфофункциональных, физиологических состояний и патологических процессов в организме человека для решения профессиональных задач. процессов, в том числе молекулярные механизмы активных форм кислорода в организме человека и молекулярную структуру, механизмы действия и пути основных антиоксидантных систем организма, мол механизмы развития заболеваний, обус нарушениями метаболизма и сопряженных с и интенсивности свободнорадикальных процессов. уметь: интерпретировать результаты лаб исследований с целью оценки инт свободнорадикальных процессов и эфф функционирования антиоксидантых ситем в клетках человека при развитии патологических процессов. владеть (иметь навык(и)): методами оценки инт свободнорадикальных процессов в биосубстратах нормы и при патологических состояниях, сопровознарушениями свободнорадикального гомеостаза.	Компетенция		Планируемые результаты обучения		
морфофункциональных, физиологических состояний и патологических процессов в организме человека для решения профессиональных задач. процессов, в том числе молекулярные механизмы активных форм кислорода в организме человека и молекулярную структуру, механизмы действия и пути основных антиоксидантных систем организма, молех механизмы развития заболеваний, обустнатущениями метаболизма и сопряженных с и интенсивности свободнорадикальных процессов. уметь: интерпретировать результаты лаби исследований с целью оценки интиской сраний с целью оценки интиской сраний с целью оценки интиской сраний и при развитии патологических процессов. владеть (иметь навык(и)): методами оценки интиской сраний и при патологических состояниях, сопровознарушениями свободнорадикального гомеостаза.	Код	Название			
нарушениями свободнорадикального гомеостаза.		Способность к оценке морфофункциональных, физиологических состояний и патологических процессов в организме человека для решения профессиональных	процессов, в том числе молекулярные механизмы генерации активных форм кислорода в организме человека и животных, молекулярную структуру, механизмы действия и пути регуляции основных антиоксидантных систем организма, молекулярные механизмы развития заболеваний, обусловленных нарушениями метаболизма и сопряженных с изменением интенсивности свободнорадикальных процессов. уметь: интерпретировать результаты лабораторных исследований с целью оценки интенсивности свободнорадикальных процессов и эффективности функционирования антиоксидантых ситем в клетках животных и человека при развитии патологических процессов. владеть (иметь навык(и)): методами оценки интенсивности свободнорадикальных процессов в биосубстратах в условиях		
ПК - 6 Способность к применению Знать: роль оксидативного статуса клетки при пато системного анализа в изучении состояниях различной этиологии.	ПК - 6	· · · · · · · · · · · · · · · · · · ·	Знать: роль оксидативного статуса клетки при патологических		

12. Объем дисциплины в зачетных единицах/часах в соответствии с учебным планом — 3/108.

Форма промежуточной аттестации экзамен

13 Виды учебной работы:

Вид учебной работы		Трудоемкость				
			По семестрам			
		Всего	Nº 8	№ семестра		
Аудиторные занятия		48	48			
	лекции	16	16			
в том числе:	практические	-	-			
	лабораторные	32	34			
Самостоятельная ра	бота	24	24			
в том числе: курсовая работа (проект)						
Форма промежуточной аттестации <i>(экзамен – 36 час.)</i>		36	36			
Итого:		108	108			

13.1 Содержание разделов дисциплины:

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины
	11 - 1	1. Лекции
1.1	Введение. Нозология — учение о болезнях. Типовые патологические процессы. Этиология. Активные формы кислорода и их генерация. Токсичность активных форм кислорода и их уровень в тканях.	Введение. Нозология — учение о болезнях. Типовые патологические процессы. Этиология. Свойства патогенных факторов. Физико-химические основы процессов, лежащих в основе повреждения клетки и клеточных органелл. Свободные радикалы, образующиеся в биосистемах. Принципы классификации свободных радикалов. Основные подходы при исследовании процессов с участием свободных радикалов. Источники активных форм кислорода в организме. Доля кислорода потребляемого человеком на генерирование энергии в клетке и на выработку АФК. Концентрация АФК в организме. Способность кислородных радикалов оказывать токсичные эффекты. Понятие о реактивных молекулах. Механизмы генерации АФК. Дыхательный взрыв при производстве АФК фагоцитами.
1.2	Характеристика основных АФК. Супероксидный анионрадикал. Пероксид водорода. Гидроксильный радикал. Синглетный кислород. Оксид азота. Радикал коэнзима	Характеристика основных АФК. Характеристика супероксидного анион-радикала. Механизмы образования и участие в нормо- и патофизиологических процессах. Образование НО2• из супероксида при закислении среды. Методы определения концентрации супероксидного анион-радикала в биосубстратах. Значение церулоплазмина для антиоксидантной защиты, особенности структуры и свойства. Механизмы образования пероксида водорода. Сопряжение образования Н2О2 с работой митохондрий и микросом. Генерирование пероксида водорода в цитозоле. Токсичность пероксида водорода и механизмы его инактивации. Методы оценки концентрации пероксида водорода. Характеристика гидроксильного радикала. Образование ОН• - радикалов в присутствии ионов переходных металлов в реакциях Фентона и Хабера-Вайса. Время жизни ОН•- радикалов в клетке. Зависимость повреждающего действия гидроксильных радикалов от места их образования. Основные типы реакций характерные для ОН• - радикалов. Методы обнаружения ОН• - радикалов. Процессы, приводящие к образованию синглетного кислорода. Понятие о хромофорах и фотодинамическом эффекте. Токсичность синглетного кислорода и механизмы его «тушения» в клетке. Химическая природа и основные свойства оксида азота. Образование пероксинитрита и радикала гидроксила в реакциях с

		участием оксида азота. Среднее время жизни в биологических тканях. Спектр биологического действия оксида азота. Методы обнаружения NO. Характеристика NO-синтаз. Образование семиубихинона при одноэлектронном окислении убихинола и при одноэлектронном восстановлении убихинона. Семиубихинон как источник других радикалов кислорода.
1.3	Свободнорадикальное окисление биомакромолекул.	Пероксидное окисление липидов: основные этапы. Биологические последствия пероксидации липидов. Методы оценки интенсивности процессов ПОЛ в биосубстратах. Окислительная модификация белков. Методы оценки уровня окислительной модификации белков в биосубстратах. Свободнорадикальное окисление нуклеиновых кислот. Повреждение митохондриальной ДНК. Методы оценки уровня окислительных повреждений ДНК.
1.4	Антиоксидантная защита. Защита с помощью ферментов.	Понятие о прооксидантах и антиоксидантах. Ферментативное и неферментативное звенья антиоксидантной защиты. Структура, субклеточная локализация и свойства супероксиддисмутазы. Методы оценки активности супероксиддисмутазы. Каталаза и пероксидазы. Катализируемые реакции, локализация, свойства. Глутатионпероксидазная/ глутатиоредуктазная ферментативная система. Субстратная специфичность, основные свойства. Поставка НАДФН для глутатионпероксидазной/глутатиоредуктазной системы. Клинические проблемы, связанные с недостаточностью ферментов пентозофосфатного пути. Значение церулоплазмина для антиоксидантной защиты, особенности структуры и свойства.
1.5	Неферментативная антиоксидантная защита.	Неферментативная антиоксидантная защита. Деление антиоксидантов на жирорастворимые и водорстворимые. Токоферолы: распространение, механизмы антиоксидантной функции. Переход витамина Е из фенольной формы в хинонную как способ регуляции антиоксидантной активности. Вещества, являющиеся синергистами витамина Е. Антиокислительная активность аскорбиновой кислоты. Роль глутатиона в антиоксидантной защите. Витамин А, каратиноиды и другие жирорастворимые антиоксиданты. Вещества — комплексоны, хелатирующие ионы металлов с переменной валентностью.
1.6	Патофизиологические и токсикологические аспекты действия АФК и значение свободнорадикальных процессов для нормальной жизнедеятельности организма. Роль активных форм кислорода в сердечнососудистой патологии.	Понятие оксидативного стресса. Молекулярные механизмы развития свободнорадикальной патологии. Роль активных форм кислорода в сердечно-сосудистой патологии. Роль свободнорадикальных процессов при остром инфаркте миокарда. Свободные радикалы при ишемической болезни сердца и артериальной гипертензии. Применение антиоксидантов при лечении сердечно-сосудистых патологий.
1.7	Роль активных форм кислорода в бронхо-легочной патологии. Активные формы кислорода в процессах канцерогенеза.	Роль активных форм кислорода в бронхо-легочной патологии. Свободнорадикальное окисление при заболеваниях пищеварительной системы. Свободнорадикальное окисление при заболеваниях нервной системы. Свободнорадикальное окисление при заболеваниях эндокринной системы. Применение веществ с антиоксидантной активностью в гастроэнтерологии и неврологии. Активные формы кислорода в процессах канцерогенеза.
1.8	Участие активных форм кислорода в процессах старения организма. Физиологические эффекты АФК.	Участие активных форм кислорода в процессах старения организма. Антиоксиданты в онкологии и геронтологии. Физиологические эффекты АФК.
2.1	Введение. Нозология — учение о болезнях. Типовые патологические процессы. Этиология. Свойства патогенных факторов. Физико-химические основы процессов, лежащих в основе повреждения клетки и клеточных органелл. Развитие представлений о свободно-радикальном	2. Лабораторные работы Техника безопасности работы в биохимической лаборатории. Методы определения свободных радикалов в биологических жидкостях. Метод биохемилюминесценции.

	окислении. Активные формы кислорода и их генерация. Токсичность активных форм кислорода и их уровень в тканях.	
2.2	Свободнорадикальное окисление биомакромолекул.	Пероксидное окисление липидов. Продукты пероксидного окисления липидов: диеновые коньюгаты, малоновый диальдегид, соединения типа оснований Шиффа. Методы определения концентрации первичных и вторичных продуктов пероксидного окисления липидов. Определение уровня диеновых коньюгатов в биоматериале. Окислительная модификация белков. Постановка метода.
		Понятие об апоптозе. Определение степени фрагментации ДНК в биоматериале. Коллоквиум по теме: «Свободные радикалы, образующиеся в клетках человека и животных. Активные формы кислорода и их генерация».
2.3	Антиоксидантная защита. Защита с помощью ферментов.	Ферментативное звено антиоксидантной системы. Определение активности каталазы в биоматериале.
2.4	Неферментативная антиоксидантная защита.	Характеристика неферментативного звена антиоксидантной системы. Определение уровня восстановленного глутатиона в биоматериале. Коллоквиум по теме: «Система антиоксидантной защиты организма человека и животных».
2.5	Патофизиологические и токсикологические аспекты действия АФК и значение свободнорадикальных процессов для нормальной жизнедеятельности организма.	Защита реферативных работ по теме: «Значение свободнорадикальных процессов для нормальной жизнедеятельности организма».

13.2. Темы (разделы) дисциплины и виды занятий

		Виды занятий (часов)				
Nº ⊓/⊓	Наименование раздела дисциплины	Лекции	Практи- ческие	Лабораторные	Самостоя- тельная работа	Всего
1	Введение. Нозология – учение о болезнях. Типовые патологические процессы. Этиология. Свойства патогенных факторов. Физико-химические основы процессов, лежащих в основе повреждения клетки и клеточных органелл. Развитие представлений о свободнорадикальном окислении. Активные формы кислорода и их генерация. Токсичность активных форм кислорода и их уровень в тканях.	2		4	2	8
2	Характеристика основных АФК. Супероксидный анионрадикал. Пероксид водорода. Гидроксильный радикал. Синглетный кислород. Оксид азота. Радикал коэнзима	2			2	4
3	Свободнорадикальное окисление биомакромолекул.	2		14	2	18
4	Антиоксидантная защита. Защита	2		4	2	8

	с помощью ферментов.				
5	Неферментативная антиоксидантная защита.	2	6	2	10
6	Патофизиологические и токсикологические аспекты действия АФК и значение свободнорадикальных процессов для нормальной жизнедеятельности организма. Роль активных форм кислорода в сердечно-сосудистой патологии.	2	2	2	6
7	Роль активных форм кислорода в бронхо-легочной патологии. Активные формы кислорода в процессах канцерогенеза.	2		6	8
8	Участие активных форм кислорода в процессах старения организма. Физиологические эффекты АФК.	2		6	8
9	Подготовка к экзамену				36
	Итого:	16	32	24	108

14. Методические указания для обучающихся по освоению дисциплины

При реализации дисциплины используются элементы электронного обучения и дистанционные образовательные технологии

Студенты знакомятся с теоретическим материалом в процессе лекционного курса, самостоятельно прорабатывают и усваивают теоретические знания с использованием рекомендуемой учебной литературы, учебно-методических пособий, согласно указанному списку.

На лабораторных занятиях студенты либо индивидуально, либо в составе малой группы выполняют учебно-исследовательскую работу. В ходе выполнения лабораторных работ студенты приобретают навыки обращения с биологическими объектами, лабораторным оборудованием и инструментарием, самостоятельно осуществляют эксперименты, регистрируют, анализируют и интерпретируют результаты исследований. Результаты учебно-исследовательской работы, включая необходимые расчеты, заключения и выводы, ответы на вопросы (задания) оформляются в рабочей тетради студента в виде протокола исследования. В конце лабораторного занятия результаты и материалы учебно-исследовательской работы докладываются преподавателю, при необходимости обсуждаются в группе (отчет о лабораторном занятии). В случаях пропуска лабораторного занятия по каким-либо причинам студент обязан его самостоятельно выполнить под контролем преподавателя во время индивидуальных консультаций.

Текущая аттестация обеспечивает проверку освоения учебного материала, приобретения знаний, умений и навыков в процессе аудиторной и самостоятельной работы студентов, формирования общепрофессиональной компетенции (ОПК-7).

Изучение данной дисциплины предусматривает проведение двух текущих аттестаций. Сроки проведения текущей аттестации регламентируются календарным планом проведения лабораторных занятий.

При подготовке к текущей аттестации студенты изучают и конспектируют рекомендуемую преподавателем учебную литературу по темам лекционных и лабораторных занятий, самостоятельно осваивают понятийный аппарат.

Текущая аттестация является обязательной, ее результаты оцениваются в балльной системе и по решению кафедры могут быть учтены при промежуточной аттестации обучающихся. Формой промежуточной аттестации знаний, умений и навыков обучающихся является устный экзамен.

Обучение лиц с ограниченными возможностями здоровья осуществляется с учетом их индивидуальных психофизических особенностей и в соответствии с индивидуальной программой реабилитации.

Промежуточная аттестация для лиц с нарушениями слуха проводится в письменной форме, при этом используются общие критерии оценивания. При необходимости, время подготовки на экзамене может быть увеличено.

Для лиц с нарушением зрения допускается аудиальное предоставление информации (например, с использованием программ-синтезаторов речи), а так же использование на лекциях звукозаписывающих устройств (диктофонов и т.д.). На лекционных занятиях и лабораторных занятиях при необходимости допускается присутствие ассистента.

При проведении промежуточной аттестации для лиц с нарушением зрения тестирование может быть заменено на устное собеседование по вопросам. При необходимости, время подготовки на экзамене может быть увеличено.

Текущий и промежуточный контроль может быть реализован с использованием элементов электронного обучения и дистанционных образовательных технологий.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)

а) основная литература:

№ п/п	Источник
1.	Медицинская биохимия: патохимия, диагностика. Интегративная биохимия. Регуляция метаболизма: учебное пособие / Г. А. Суханова, Д. И. Кузьменко, В. Ю. Серебров, Л. В. Спирина. — Томск: СибГМУ, 2018. — 112 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/113564. — Режим доступа: для авториз. пользователей.
2.	Ооржак, У. С. Биологическая химия : учебное пособие / У. С. Ооржак. — Кызыл : ТувГУ, 2018 — Часть 1 — 2018. — 173 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/156257. — Режим доступа: для авториз. пользователей.
3.	Акбашева, О. Е. Биологическая химия: учебное пособие / О. Е. Акбашева, И. А. Позднякова; под редакцией В. Ю. Сереброва. — Томск: СибГМУ, 2016. — 220 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/105843. — Режим доступа: для авториз. пользователей.

б) дополнительная литература:

Nº	Мотограм
п/п	Источник
4.	Спецпрактикум по биоэнергетике : учебно-методическое пособие / составители А. П. Гуреев [и др.]. — Воронеж : ВГУ, 2017. — 39 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/154754. — Режим доступа: для авториз. пользователей.
5.	Зенков, Николай Константинович. Окислительный стресс : Биохим. и патофизиол. аспекты / Н. К. Зенков, В. З. Ланкин, Е. Б. Меньщикова .— М. : Наука/ Интерпериодика, 2001 .— 342, [1] с. : ил., табл. — ISBN 5-7846-0050-8 : 90.00.
6.	Окислительный стресс. Патологические состояния и заболевания / Е.Б. Меньщикова [и др.] ; Науч. центр клин. и эксперимент. медицины СО РАМН [и др.] .— Новосибирск : АРТА, 2008 .— 282, [1] с. : ил., табл. — Библиогр.: с. 203 - 283 .— ISBN 5-902700-15-9.
7.	Новикова И.А. Клиническая и лабораторная гематология: учебное пособие [Электронный ресурс] / И.А Новикова, С.А. Ходулева Вышэйшая школа, 2013. – 448 с http://biblioclub.ru/index.php?page=book&id=235658
8.	Свободнорадикальные процессы в биосистемах : учебное пособие / Т.Н. Попова [и др.] .— Старый Оскол : Кириллица, 2008 .— 188 с.
9.	Владимиров Ю.А. Свободнорадикальное окисление липидов и физические свойства липидного слоя биологических мембран / Ю.А. Владимиров // Биофизика 1987 Т.32, №5 С.830-844.
10.	Владимиров Ю.А. Свободные радикалы в биологических системах / Ю.А. Владимиров // Соросовский образовательный журнал. – 2000 Т. 6, №12 С. 13-19.
11.	Жеребцов Н.А. Биохимия / Н.А. Жеребцов, Т.Н.Попова, В.Г.Артюхов — Воронеж: Издательство Воронежского государственного университета, 2002. — 696 с.
12.	Комов В.П. Биохимия / В. П. Комов, В. Н. Шведова .— М. : Дрофа, 2004 .— 638 с.
13.	Методы оценки оксидативного статуса : учебно-методическое пособие для вузов / Воронеж. гос. унт; [сост.: Т.И. Рахманова и др.] .— Воронеж : ИПЦ ВГУ, 2009 .— 61 с. — http://www.lib.vsu.ru/elib/texts/method/vsu/m09-192.pdf.
14.	Осипов А.Н. Активные формы кислорода и их роль в организме / А.Н. Осипов, О.А. Азизова, Ю.А. Владимиров // Успехи биологической химии. – 1990. – Т. 31, № 2. – С. 180-208.
15.	Осипов А.Н. Образование гидроксильных радикалов при взаимодействии гипохлорита с ионами

	железа/ А.Н. Осипов, Э.Ш. Якутова, Ю.А.Владимиров// Биофизика 1993 Т.39,№3С.390-396.
16.	Пырочкин В.М. Механизмы транспорта кислорода и свободнорадикального окисления липидов при инфаркте миокарда в сочетании с метаболическим синдромом, сахарным диабетом 2-го типа [Электронный ресурс] : монография / В.М. Пырочкин, Н.В. Глуткина. —Минск : Новое знание, 2014. — 136 с. —http://lanbook.lib.vsu.ru/books/element.php?pl1_id=64899
17.	Свободные радикалы в живых системах / Владимиров Ю.А[и др.] // Итоги науки и техники. Сер. Биофизика 1991 Т.29, №5. – С.254-259.
18.	Скулачев В.П. Кислород в живой клетке: Добро и зло / В.П. Скулачев // Соросовский образовательный журнал. – 1996. – № 3. – С. 4-10.

в)информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

№ п/п	Pecypc
19.	ЭУМК на платформе "Электронный университет ВГУ" (MOODLE). Молекулярные основы развития
	патологических процессов https://edu.vsu.ru/course/view.php?id=13742
20.	www.lib.vsu.ru
21.	ЭБС ЮРАЙТ
22.	ЭБС «Университетская библиотека онлайн»
23.	ЭБС Лань
24.	ЭБС «Электронная библиотека технического ВУЗа» (ЭБС «Консультант студента»)*
25.	MOLBIOL. RU – Классическая и молекулярная биология (http://www.molbiol.ru).
26.	National Center for Biotechnology Information /US National Library of Medicine (http://www.pubmed.com).
27.	Тотальные ресурсы

^{*} Вначале указываются ЭБС, с которыми имеются договора у ВГУ, затем открытые электронно-образовательные ресурсы

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

№ п/п	Источник
1.	Спецпрактикум по биоэнергетике : учебно-методическое пособие / составители А. П. Гуреев [и др.]. — Воронеж : ВГУ, 2017. — 39 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/154754. — Режим доступа: для авториз. пользователей.
2.	Медицинская биохимия: патохимия, диагностика. Интегративная биохимия. Регуляция метаболизма : учебное пособие / Г. А. Суханова, Д. И. Кузьменко, В. Ю. Серебров, Л. В. Спирина. — Томск : СибГМУ, 2018. — 112 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/113564. — Режим доступа: для авториз. пользователей.
3.	Свободнорадикальные процессы в биосистемах : учебное пособие / Т.Н. Попова [и др.] .— Старый Оскол : Кириллица, 2008 .— 188 с.
4.	Методы оценки оксидативного статуса : учебно-методическое пособие для вузов / Воронеж. гос. ун-т; [сост.: Т.И. Рахманова и др.] .— Воронеж : ИПЦ ВГУ, 2009 .— 61 с. — http://www.lib.vsu.ru/elib/texts/method/vsu/m09-192.pdf.

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы

При реализации дисциплины используются элементы электронного обучения и дистанционные образовательные технологии.

18. Материально-техническое обеспечение дисциплины:

Кафедра медицинской биохимии и микробиологии, обеспечивающая реализацию образовательной программы, располагает материально-технической базой и аудиторным фондом, обеспечивающим проведение лекций, семинаров и иных видов учебной работы студентов, предусмотренных учебным планом и соответствующих действующим санитарно-техническим нормам.

Учебная аудитория для проведения занятий лекционного типа (г.Воронеж, площадь Университетская, д.1, пом.І, ауд. 190). Специализированная мебель, проектор Асег X115H

DLP, экран для проектора, ноутбук Lenova G580 с возможностью подключения к сети «Интернет» с помощью беспроводной системы WiFi.

Лаборантская, помещение для хранения и профилактического обслуживания учебного оборудования (г.Воронеж, площадь Университетская, д.1, пом.І, ауд. 184а). Ноутбук Lenova G580.

Лаборатория биохимии и фармакологии (для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации) (г.Воронеж, Университетская пл., д.1, пом.І, ауд. 199). Специализированная мебель, спектрофотометр СФ-56A, спектрофотометр Нітасні U-1900, спектрофотометр СФ-26A, биохемилюминометр БХЛ-07, биохемилюминометр БХЛ-06M, прибор для вертикального электрофореза VE-2M, аппарат для горизонтального электрофореза SE-1, анализатор иммуноферментных реакций «УНИПЛАН» АИФР-01, холодильник-морозильник Indesit B18FNF, магнитная мешалка ММ5, шейкер, гомогенизатор, рН-метр Анион 410, ротамикс, термостат электрический суховоздушный ТС-1/80 СПУ, дозаторы.

Лаборатория микробиологии (для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации) (г.Воронеж, Университетская пл., д.1, пом.І, ауд. 197). Специализированная мебель, набор лабораторной посуды и штативов, ламинарбокс, микроскопы, центрифуга Ерреndorf 5702, центрифуга для пробирок типа «Эппендорф» MiniSpin, спектрофотометр СФ-56A, анализатор иммуноферментных реакций «УНИПЛАН», холодильник-морозильник Stinol-116, рН-метр Анион 410, аквадистиллятор ДЭ-10, устройство для очистки и стерилизации воздуха УОС-99-01-«Сампо», весы ВЛМ 150П, магнитная мешалка ММ5, термостат электрический суховоздушный ТС-1/80 СПУ.

Дисплейный класс, аудитория для самостоятельной работы (г.Воронеж, площадь Университетская, д.1, пом.І, ауд. 67). Специализированная мебель, компьютеры (системный блок Intel Celeron CPU 430 1.8 GHz, монитор Samsung SyncMaster 17) (8 шт.) с возможностью подключения к сети «Интернет».

19. Фонд оценочных средств:

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и содержание компетенции	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенции посредством формирования знаний, умений,	Этапы формирования компетенции (разделы дисциплины и их наименование)	ФОС* (средства оценивания)
ОПК -7 Способность к оценке морфофункциональных, физиологических состояний и патологических процессов в организме человека для решения профессиональных задач	навыков) знать: молекулярные основы развития патологических процессов, в том числе молекулярные механизмы генерации активных форм кислорода в организме человека и животных, молекулярную структуру, механизмы действия и пути регуляции основных антиоксидантных систем организма, молекулярные механизмы развития заболеваний, обусловленных нарушениями метаболизма и сопряженных с изменением интенсивности свободнорадикальных процессов.	1.1 Введение. Нозология – учение о болезнях. Типовые патологические процессы. Этиология. Свойства патогенных факторов. Физико-химические основы процессов, лежащих в основе повреждения клетки и клеточных органелл. Развитие представлений о свободно-радикальном окислении. Активные формы кислорода и их генерация. Токсичность активных форм кислорода и их уровень в тканях. 1.2 Характеристика основных АФК. Супероксидный анионрадикал. Пероксид водорода. Гидроксильный радикал. Синглетный кислород. Оксид азота.	Устный опрос Лабораторная работа Коллоквиум №1, №2 Тест №1, №2

	Радикал коэнзима 1.3 Свободнорадикальн ое окисление биомакромолекул. 1.4 Антиоксидантная защита. Защита с помощью ферментов. 1.5 Неферментативная антиоксидантная защита. 1.6 Патофизиологически е и токсикологические аспекты действия АФК и значение свободнорадикальных процессов для нормальной жизнедеятельности организма. Роль активных	
	форм кислорода в сердечно- сосудистой патологии. 1.7 Роль активных форм кислорода в бронхо-легочной патологии. Активные формы кислорода в процессах канцерогенеза. 1.8 Участие активных форм кислорода в процессах старения организма. Физиологические эффекты АФК.	
уметь: интерпретировать результаты лабораторных исследований с целью оценки интенсивности свободнорадикальных процессов и эффективности функционирования антиоксидантых ситем в клетках животных и человека при развитии патологических процессов.	1.6 Патофизиологически е и токсикологические аспекты действия АФК и значение свободнорадикальных процессов для нормальной жизнедеятельности организма. Роль активных форм кислорода в сердечнососудистой патологии. 1.7 Роль активных форм кислорода в бронхо-легочной патологии. Активные формы кислорода в процессах канцерогенеза. 1.8 Участие активных форм кислорода в процессах старения организма. Физиологические эффекты АФК.	Устный опрос Лабораторная работа Коллоквиум №1, №2 Тест №1, №2 Практическое задание
владеть (иметь навык(и)): методами оценки интенсивности свободнорадикальных процессов в биосубстратах в условиях нормы и при патологических состояниях, сопровождающихся нарушениями свободнорадикального гомеостаза.	1.1 Введение. Нозология – учение о болезнях. Типовые патологические процессы. Этиология. Свойства патогенных факторов. Физико-химические основы процессов, лежащих в основе повреждения клетки и клеточных органелл. Развитие представлений о свободно-радикальном окислении. Активные формы кислорода и их генерация. Токсичность активных форм кислорода и их уровень в тканях. 1.2 Характеристика	Лабораторная работа Коллоквиум №1, №2 Тест №1, №2 Практическое задание

ПК - 6 Способность к применению системного анализа в изучении биологических систем	Знать: роль оксидативного статуса клетки при патологических состояниях различной этиологии.	основных АФК. Супероксидный анионрадикал. Пероксид водорода. Гидроксильный радикал. Синглетный кислород. Оксид азота. Радикал коэнзима 1.3 Свободнорадикальн ое окисление биомакромолекул. 1.4 Антиоксидантная защита. Защита с помощью ферментов. 1.5 Неферментативная антиоксидантная защита. Защита защита. 1.6 Патофизиологические аспекты действия АФК и значение свободнорадикальных процессов для нормальной жизнедеятельности организма. Роль активных форм кислорода в сердечнососудистой патологии. 1.7 Роль активных форм кислорода в бронхо-легочной патологии. Активные формы кислорода в процессах канцерогенеза. 1.8 Участие активных форм кислорода в процессах старения организма.	Реферативные работы
Промежуточная аттестаці	1 9	Физиологические эффекты АФК.	Экзамен
			Комплект КИМ

^{*} В графе «ФОС» в обязательном порядке перечисляются оценочные средства текущей и промежуточной аттестаций.

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Для оценивания результатов обучения на экзамене используются следующие показатели:

при ответе на задания студент:

- знает молекулярные механизмы развития заболеваний, обусловленных нарушениями метаболизма и сопряженных с изменением интенсивности свободнорадикальных процессов
- демонстрирует знания о механизмах генерации активных форм кислорода в организме человека и животных
- знает молекулярную структуру, механизмы действия основных антиоксидантных систем организма
- знает роль оксидативного статуса клетки при патологических состояниях различной этиологии
- умеет интерпретировать результаты лабораторных исследований с целью оценки интенсивности свободнорадикальных процессов в клетках животных и человека
- умеет интерпретировать результаты лабораторных исследований с целью оценки эффективности функционирования антиоксидантых ситем в клетках животных и человека
- В полной мере владеет методами оценки интенсивности свободнорадикальных процессов в биосубстратах в условиях нормы и при патологических состояниях, сопровождающихся нарушениями свободнорадикального гомеостаза
- способен предложить схему эксперимента и интерпретировать полученные результаты

Критерии оценивания компетенций	Уровень сформирова нности компетенций	Шкала оценок
Полное соответствие ответа обучающегося всем перечисленным критериям. продемонстрированы: знания о механизмах генерации активных форм кислорода в организме человека и животных, молекулярной структуре, механизмах действия основных антиоксидантных систем организма, молекулярных механизмах развития заболеваний, обусловленных нарушениями метаболизма и сопряженных с изменением интенсивности свободнорадикальных процессов; знания о роли оксидативного статуса клетки при патологических состояниях различной этиологии; умение интерпретировать результаты лабораторных исследований с целью оценки интенсивности свободнорадикальных процессов и эффективности функционирования антиоксидантых ситем в клетках животных и человека; владение методами оценки интенсивности свободнорадикальных процессов в биосубстратах в условиях нормы и при патологических состояниях, сопровождающихся нарушениями свободнорадикального гомеостаза, способен предложить схему эксперимента и интерпретировать полученные результаты	<i>Повышенны</i> й уровень	отлично
Ответ на контрольно-измерительный материал не соответствует одному (двум) из перечисленных показателей, но обучающийся дает правильные ответы на дополнительные вопросы. Требуются наводящие вопросы для формирование целостного ответа.	Базовый уровень	хорошо
Ответ на контрольно-измерительный материал не соответствует любым трем (четырем) из перечисленных показателей, обучающийся дает неполные ответы на дополнительные вопросы. Требуются наводящие вопросы для формирования целостного ответа на вопрос. Демонстрирует частичные знания, умения и навыки.	Пороговый уровень	удовлетвор ительно
Ответ на контрольно-измерительный материал не соответствует пяти и более перечисленным показателям. Обучающийся демонстрирует отрывочные, фрагментарные знания, допускает грубые ошибки при ответе на вопросы.	_	неудовлетв орительно

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1 Перечень вопросов к экзамену:

- 1. Развитие представлений о свободно-радикальном окислении.
- 2. Свободные радикалы, образующиеся в биосистемах.
- 3. Принципы классификации свободных радикалов.
- 4. Механизмы образования и биологическая роль природных свободных радикалов (классификация Владимирова Ю.А.)
- 5. Понятие о реактивных молекулах. Активные формы кислорода, азота и хлора.

- 6. Доля кислорода потребляемого человеком на генерирование энергии в клетке и на выработку АФК. Концентрация АФК в организме.
- 7. Характеристика дыхательного взрыва при производстве АФК фагоцитами.
- 8. Механизмы генерации АФК.
- 9. Укажите схему взаимопревращений АФК.
- 10. Характеристика супероксидного анион-радикала. Механизмы образования и участие в нормо- и патофизиологических процессах.
- 11. Образование HO2• из супероксида при закислении среды. Методы определения концентрации супероксидного анион-радикала в биосубстратах.
- 12. Значение церулоплазмина для антиоксидантной защиты, особенности структуры и свойства.
- 13. Механизмы образования перекиси водорода. Сопряжение образования H2O2 с работой митохондрий и микросом. Генерирование пероксида водорода в цитозоле.
- 14. Токсичность пероксида водорода и механизмы его инактивации. Методы оценки концентрации пероксида водорода.
- 15. Способы образования гидроксильного радикала. Методы идентификации OH• радикалов.
- 16. Время жизни OH•- радикалов в клетке. Основные типы реакций характерные для OH• радикалов.
- 17. Процессы, приводящие к образованию синглетного кислорода. Понятие о хромофорах и фотодинамическом эффекте.
- 18. Токсичность синглетного кислорода и механизмы его «тушения» в клетке.
- 19. Общая характеристика оксида азота. NO-синтазы и их роль в образовании оксида азота.
- 20. Физиологические функции оксида азота.
- 21. Образование семиубихинона. Семиубихинон как источник других радикалов кислорода.
- 22. Реакции пероксидного окисления липидов: инициация, продолжение и разветвление цепи ПОЛ.
- 23. Возможные пути обрыва процессов ПОЛ в клетке. Использование хемилюминесценции для изучения пероксидного окисления липидов.
- 24. Последствия пероксидного окисления липидов.
- 25. Контроль пероксидного окисления липидов под действием ферментативных и неферментативных систем клетки.
- 26. Структура, субклеточная локализация и свойства супероксиддисмутазы.
- 27. Каталаза и пероксидазы. Катализируемые реакции, локализация, свойства.
- 28. Глутатионпероксидазная/ глутатиоредуктазная ферментативная система.
- 29. Селенсодержащая и не содержащая селена глутатиопероксидаза. Субстратная специфичность, основные свойства.
- 30. Поставка НАДФН для глутатионпероксидазной/ глутатиоредуктазной системы. Клинические проблемы, связанные с недостаточностью ферментов пентозофосфатного пути.
- 31. Деление антиоксидантов на жирорастворимые и водорстворимые.
- 32. Токоферолы: распространение, механизмы антиоксидантной функции. Переход витамина Е из фенольной формы в хинонную как способ регуляции антиоксидантной активности.
- 33. Вещества, являющиеся синергистами витамина Е.
- 34. Антиокислительная активность аскорбиновой кислоты.
- 35. Роль глутатиона и мочевой кислоты в антиоксидантной защите.
- 36. Витамин А, каратиноиды и другие жирорастворимые антиоксиданты.
- 37. Значение церулоплазмина для антиоксидантной защиты, особенности структуры и свойства.
- 38. Вещества комплексоны, хелатирующие ионы металлов с переменной валентностью.
- 39. Понятие оксидативного стресса.
- 40. Нарушение структуры и функций митохондрий при действии АФК.
- 41. Последовательность событий при тканевой гипоксии.
- 42. Роль свободнорадикальных процессов при остром инфаркте миокарда.
- 43. Свободные радикалы при ишемической болезни сердца и артериальной гипертензии.
- 44. Свободнорадикальное окисление при заболеваниях дыхательной системы.

- 45. Роль свободнорадикального окисления в патогенезе заболеваний пищеварительной системы (язвенная болезнь желудка, гастродуодениты, колиты и другие).
- 46. Роль свободнорадикального окисления в развитии гепатита.
- 47. Роль АФК в развитии полинейропатии.
- 48. Механизмы, лежащие в основе мозгового инсульта.
- 49. Роль свободнорадикальных процессов в цереброваскулярной патологии.
- 50. Участие свободнорадикальных процессов в развитии сахарного диабета.
- 51. Свободнорадикальное окисление при гипертиреозе.
- 52. Свободнорадикальное окисление при канцерогенезе.
- 53. Роль свободнорадикального окисления в процессах старения.
- 54. Антиоксиданты в кардиологии.
- 55. Применение антиоксидантов при лечении сердечно-сосудистых патологий.
- 56. Применение реамберина и тиоктовой кислоты в кардиологии.
- 57. Антиоксиданты в гастроэнтерологии.
- 58. Антиоксиданты в неврологии.
- 59. Антиоксиданты в эндокринологии.
- 60. Антиоксиданты в онкологии.
- 61. Антиоксиданты в геронтологии.

19.3.2 Перечень практических заданий

- 1. Для экспериментального моделирования гемолитической анемии животному вводят фенилгидразин, который стимулирует свободнорадикальные реакции и при контакте с эритроцитами вызывает дезорганизацию фосфолипидного слоя мембран и нарушение водно-электролитного баланса клетке. Охарактеризуйте механизмы повреждающего действия активированных реакций пероксидного окисления липидов внутри клетки. С помощью, каких методов вы сможете оценить интенсивность свободнорадикальных процессов?
- 2. При экспериментальном токсическом гепатите у крыс было выявлено повышение параметров биохемилюминесценции и активности глутатионпероксидазы, глутатионредуктазы и уровня глутатиона. С чем связано повышение данных показателей при развитии экспериментального токсического гепатита у крыс. Представьте методы оценки активности глутатионпероксидазы, глутатионредуктазы и уровня глутатиона в биосубстратах.
- 3. В настоящее время известно, что введение лекарственных препаратов супероксиддисмутазы (Эрисод, Орготеин (Пероксинорм)) при остром инфаркте миокарда приводит к уменьшению зоны поражения миокарда. Обоснуйте применение данного препарата с учетом роли свободных радикалов при развитии патологического состояния. Предложите метод определения активности супероксиддисмутазы в биосубстратах.
- 4. При развитии экспериментального гипертиреоза в сыворотке крови крыс было выявлено увеличение параметров биохемилюминесценции и уровня диеновых коньюгатов. Введение тиоктовой кислоты приводило к изменению данных показателей в сторону показателей контрольной группы животных (норма). Предложите механизмы реализации данного протекторного эффекта. Представьте план эксперимента по оценке параметров биохемилюминесценции и уровня диеновых коньюгатов в сыворотке крови животных.
- 5. Предложите способы оценки интенсивности свободнорадикальных процессов в биосубстратах. Обоснуйте выбор метода (-ов). Разработайте план исследования.
- 6. Предложите способы оценки уровня функционирования неферментативного звена антиоксидантной защиты организма. Обоснуйте выбор метода (-ов). Представьте схему эксперимента.

19.3.3 Тестовые задания

Приведен пример тестового задания

Тест 1

ОСНОВАТЕЛЕМ ХИМИИ СВОБОДНЫХ РАДИКАЛОВ ПРИНЯТО СЧИТАТЬ

- А) Мозеса Гомберга
- В) Н.Н. Семенова

- С) С. Хиншельвуда
- УКАЖИТЕ ФЕРМЕНТЫ ИЛИ РЕАКЦИИ, ОБЕСПЕЧИВАЮЩИЕ ОБРАЗОВАНИЕ РАДИКАЛА УБИХИНОЛА
- А) НАДФН-оксидаза
- В) NO-синтаза
- С) Дыхательная цепь митохондрий
- УКАЖИТЕ ФЕРМЕНТЫ ИЛИ РЕАКЦИИ, ОБЕСПЕЧИВАЮЩИЕ ОБРАЗОВАНИЕ СУПЕРОКСИДА
- А) НАДФН-оксидаза
- В) NO-синтаза
- С) Дыхательная цепь митохондрий
- ОБРАЗОВАНИЕ ВТОРИЧНЫХ РАДИКАЛОВ ЯВЛЯЕТСЯ НЕСПЕЦИФИЧЕСКИМ УНИВЕРСАЛЬНЫМ МЕХАНИЗМОМ, ЛЕЖАЩИМ В ОСНОВЕ РАЗВИТИЯ
- А) канцерогенеза
- В) атеросклероза
- С) хронических воспалений
- D) нервных дегенеративных болезней
- Е) все перечисленное
- ОДНИМ ИЗ ОСНОВНЫХ ПОДХОДОВ ПРИ ИЗУЧЕНИИ СВОБОДНОРАДИКАЛЬНЫХ ПРОЦЕССОВ ЯВЛЯЕТСЯ
- А) метод электронного парамагнитного резонанса
- В) рентгеноструктурного анализа
- С) проточная цитометрия
- ИНТЕНСИВНОСТЬ МАКСИМАЛЬНОЙ ВСПЫШКИ БИОХЕМИЛЮМИНЕСЦЕНЦИИ ПРОПОРЦИОНАЛЬНА
- А) скорости реакции с участием радикалов
- В) общей активности антиоксидантной системы
- В ХОДЕ «РЕСПИРАТОРНОГО ВЗРЫВА» МОЛЕКУЛА КИСЛОРОДА ВОССТАНАВЛИВАЕТСЯ ЗА СЧЕТ НАДФН ДО
- А) супероксиданион-радикала
- В) синглетного кислорода
- С) гидроксильного радикала
- КАКОВО ФИЗИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ «РЕСПИРАТОРНОГО ВЗРЫВА»
- А) с помощью него фагоциты удаляют чужеродные клетки
- В) с помощью него удаляется лишний кислород
- С) с помощью него регулируется количество фагоцитов
- У СВОБОДНЫХ РАДИКАЛОВ НА ВНЕШНЕЙ ЭЛЕКТРОННОЙ ОБОЛОЧКЕ ИМЕЕТСЯ
- А) 1 непарный (одиночный) электрон
- В) 1 непарный (одиночный) электрон или несколько непарных электронов
- С) парный электрон
- СУПЕРОКСИД МОЖЕТ САМОПРОИЗВОЛЬНО ДИСМУТИРОВАТЬ С ОБРАЗОВАНИЕМ
- А) пероксида водорода
- В) гидроксильного радикала
- С) гипохлорита
- ДЛЯ ТОГО, ЧТОБЫ В ХОДЕ РАБОТЫ ЭЛЕКТРОНТРАНСПОРТНОЙ ЦЕПИ ИЗ КИСЛОРОДА ПОЛУЧИЛАСЬ ВОДА, КИСЛОРОД ДОЛЖЕН ПРИНЯТЬ НА СЕБЯ
- А) 4 электрона и 4 протона
- В) 2 электрона и 4 протона
- С) 4 электрона и 2 протона
- В СЛУЧАЕ НЕПОЛНОГО ВОССТАНОВЛЕНИЯ КИСЛОРОДА ПРИ ПРИСОЕДИНЕНИИ ДВУХ ЭЛЕКТРОНОВ ОБРАЗУЕТСЯ
- А) пероксид водорода
- В) гидроксильный радикал
- С) супероксид
- ОДНОЭЛЕКТРОННОЕ ВОССТАНОВЛЕНИЕ О2 ПРИВОДИТ К ОБРАЗОВАНИЮ
- А) супероксидного анион-радикала
- В) пероксида водорода

С) гидроксильного радикала

Тест 2

 $2O2 - + 2H + \rightarrow O2 + H2O2$ Указанная реакция катализируется:

- А) Глутатионпероксидазой
- В) Супероксиддисмутазой
- С) Каталазой
- D) NADPH-оксидазой
- $2H2O2 \rightarrow H2O + O2Указанная реакция катализируется:$
- А) Глутатионредуктазой
- В) Супероксиддисмутазой
- С) Каталазой
- D) Глутатионпероксидазой
- $2GSH + H2O2 \rightarrow GSSG + 2H2OУ$ казанная реакция катализируется:
- А) Глутатионредуктазой
- В) Супероксиддисмутазой
- С) Каталазой
- D) Глутатионпероксидазой

ПЕРОКСИДНОЕ ОКИСЛЕНИЕ ЛИПИДОВ МОЖНО РАССМАТРИВАТЬ КАК ФИЗИОЛОГИЧЕСКИЙ ПРОЦЕСС В ЧАСТИ

- А) активации окислительных процессов, связанных с дыхательной цепью
- В) обновления биологических мембран
- С) активации транспортной функции мембран
- D) активации образования свободных радикалов
- GSSG + NADPH + H+ \rightarrow 2 GSH + NADP+Указанная реакция катализируется:
- А) Глутатионредуктазой
- В) Супероксиддисмутазой
- С) Каталазой
- D) Глутатионпероксидазой
- L + •OH → L•Указанная реакция относится к следующей реакции ПОЛ
- А) Инициация
- В) Продолжение цепи
- С) Разветвление цепи
- D) Обрыв цепи
- LOO• + Fe2+ + H+ \rightarrow LOOHУказанная реакция относится к реакции ПОЛ:
- А) Инициация
- В) Продолжение цепи
- С) Разветвление цепи
- D) Обрыв цепи
- L^{\bullet} + O2 \rightarrow LOO•Указанная реакция относится к реакции ПОЛ:
- А) Инициация
- В) Продолжение цепи
- С) Разветвление цепи
- D) Обрыв цепи
- LOOH + Fe2+ \rightarrow LO• + OH- + Fe3+Указанная реакция относится к реакции ПОЛ:
- А) Инициация
- В) Продолжение цепи
- С) Разветвление цепи
- D) Обрыв цепи
- CU,ZN-COД РАССМАТРИВАЮТ КАК
- А) эукариотический цитозольный фермент
- В) прокариотический фермент
- С) эукариотический митохондриальный фермент

19.3.4 Вопросы к коллоквиуму

No1

- 1. Развитие представлений о свободно-радикальном окислении.
- 2. Свободные радикалы, образующиеся в биосистемах.
- 3. Принципы классификации свободных радикалов.

- 4. Механизмы образования и биологическая роль природных свободных радикалов (классификация Владимирова Ю.А.).
- 5. Понятие о реактивных молекулах. Активные формы кислорода, азота и хлора.
- 6. Доля кислорода потребляемого человеком на генерирование энергии в клетке и на выработку АФК. Концентрация АФК в организме.
- 7. Характеристика дыхательного взрыва при производстве АФК фагоцитами.
- 8. Механизмы генерации АФК.
- 9. Укажите схему взаимопревращений АФК.
- 10. Характеристика супероксидного анион-радикала. Механизмы образования и участие в нормо- и патофизиологических процессах.
- 11. Образование HO2• из супероксида при закислении среды. Методы определения концентрации супероксидного анион-радикала в биосубстратах.
- 12. Значение церулоплазмина для антиоксидантной защиты, особенности структуры и свойства.
- 13. Механизмы образования перекиси водорода. Сопряжение образования H2O2 с работой митохондрий и микросом. Генерирование пероксида водорода в цитозоле.
- 14. Токсичность пероксида водорода и механизмы его инактивации. Методы оценки концентрации пероксида водорода.
- 15. Способы образования гидроксильного радикала. Методы идентификации ОН• радикалов.
- 16. Время жизни OH•- радикалов в клетке. Основные типы реакций характерные для OH• радикалов.
- 17. Процессы, приводящие к образованию синглетного кислорода. Понятие о хромофорах и фотодинамическом эффекте.
- 18. Токсичность синглетного кислорода и механизмы его «тушения» в клетке.
- 19. Общая характеристика оксида азота. NO-синтазы и их роль в образовании оксида азота.
- 20. Физиологические функции оксида азота.
- 21. Образование семиубихинона. Семиубихинон как источник других радикалов кислорода. **№2**
- 1. Реакции пероксидного окисления липидов: инициация, продолжение и разветвление цепи ПОЛ.
- 2. Возможные пути обрыва процессов ПОЛ в клетке. Использование хемилюминесценции для изучения пероксидного окисления липидов.
- 3. Последствия пероксидного окисления липидов.
- 4. Контроль пероксидного окисления липидов под действием ферментативных и неферментативных систем клетки.
- 5. Понятие о прооксидантах и антиоксидантах.
- 6. Структура, субклеточная локализация и свойства супероксиддисмутазы.
- 7. Методы оценки активности супероксиддисмутазы.
- 8. Каталаза и пероксидазы. Катализируемые реакции, локализация, свойства.
- 9. Глутатионпероксидазная/глутатионредуктазная ферментативная система.
- 10. Селенсодержащая и не содержащая селена глутатионпероксидаза. Субстратная специфичность, основные свойства.
- 11. Поставка НАДФН для глутатионпероксидазной/глутатионредуктазной системы. Клинические проблемы, связанные с недостаточностью ферментов пентозофосфатного пути.
- 12. Деление антиоксидантов на жирорастворимые и водорастворимые.
- 13. Токоферолы: распространение, механизмы антиоксидантной функции. Переход витамина Е из фенольной формы в хинонную как способ регуляции ферментативной активности.
- 14. Вещества, являющиеся синергистами витамина Е.
- 15. Антиокислительная активность аскорбиновой кислоты.
- 16. Структура и основные функции липоевой кислоты.
- 17. Убихинон и его роль в организме.
- 18. Роль глутатиона и мочевой кислоты в антиоксидантной защите.
- 19. Вещества-комплексоны, хелатирующие ионы металлов с переменной валентностью.

- 1. Роль железа и железосодержащих белков в регуляции СРП в норме и при патологии
- 2. Редокс-статус клетки и его регуляция в норме и при патологии
- 3. Уровень активных форм кислорода в венозной крови у пациентов с обструктивными заболеваниями легких
- 4. Программированная гибель клеток, индуцированная гиперпродукцией АФК, в патологии сердечно-сосудистых заболеваний.
- 5. Механизмы генерации АФК при сахарном диабете 2 типа.
- 6. Осложнения сахарного диабета, вызванные гиперпродукцией АФК.
- 7. Механизмы генерации АФК при ревматоидном артрите.
- 8. Генерация АФК в моноцитах.

19.3.6 Протокол оформления лабораторной работы

- 1. Название работы
- 2. Принцип применяемого метода
- 3. Реактивы
- 4. Ход работы
- 5. Порядок расчета результатов
- 6. Диапазон применения данного метода
- 7. Измеренные величины
- 8. Расчет результатов
- 9. Выводы

Дата

Подпись студента

Критерии оценки: лабораторная работа является зачтенной при выполнении следующих требований

- лабораторная работа оформлена в рабочей тетради в соответствии с методическими рекомендациями);
 - ответы на устные вопросы по теме занятия и содержанию лабораторной работы;
 - активность и самостоятельность при выполнении задания;
 - оформление результатов в соответствии с методическими рекомендациями;
- умение анализировать, обсуждать полученные результаты и самостоятельно формулировать выводы.

Работа считается выполненной и зачтенной, если студент в конце занятия представил отчет в соответствии с данными методическими рекомендациями.

19.3.7 Устный опрос

Вопросы по соответствующим разделам дисциплины

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация может проводиться в форме устного опроса (индивидуальный опрос) или письменных работ (коллоквиумы, выполнение практикоориентированных заданий, или тестирования. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

При реализации дисциплины могут быть использованы элементы электронного обучения и дистанционные образовательные технологии.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний и

практическое задание, позволяющее оценить степень сформированности умений и(или) навыков.

Критерии оценивания приведены выше.

Приложение Примерный перечень оценочных средств и критериев оценки

	Наиманарациа	Продотордошио	
Nº	Наименование	Представление	Критории ополии
п/п	оценочного	оценочного средства в	Критерии оценки
	средства	фонде	,
1	2	3	4
	Устный опрос	Вопросы по разделам	Оценка «отлично» выставляется студенту за
		дисциплины	полный, грамотный и развернутый ответ.
			Оценка «хорошо» выставляется студенту,
			если он представил полный правильный ответ по
			вопросу, но им была допущена 1 негрубая ошибка и
1			1-2 неточности.
			Оценка «удовлетворительно» выставляется за
			неполный ответ, который содержит грубые ошибки.
			Оценка «неудовлетворительно» выставляется, если
			студент не продемонстрировал знания по существу
			вопроса или не представил ответы на вопросы
2	Практическое	Практическое задание	оценка «отлично» выставляется студенту, если он
	задание		представляет сформированные умения и в полной
			мере владеет методами в соответствии с
			приведенными в таблице 2 показателями;
			оценка «хорошо» ставится, если обучающийся
			демонстрирует сформированные умения и
			владение методами в соответствии с
			приведенными в таблице 2 показателями, но
			допускает незначительные ошибки и неточности;
			оценка «удовлетворительно» выставляется
			студенту, если он демонстрирует неполное
			соответствие знаний, умений, навыков
			приведенным в таблицах показателям и допускает
			значительные ошибки при выполнении задания;
			оценка «неудовлетворительно» ставится, если
			студент представляет фрагментарные умения и
	ICIANA		владения или их отсутствие
3	КИМ промежуточной	Каждый контрольно-	Шкалы оценивания приведены в разделе 19.2
	аттестации	измерительный	
		материал для	
		проведения	
		промежуточной	
		аттестации включает 4	
		задания (3 теоретических	
		вопроса и практическое	
		задание) для контроля	
		знаний, умений и	
		владений в рамках	
		оценки уровня	
		сформированности	
		компетенции.	

Форма контрольно-измерительного материала

Заведующий кафедрой медицинской биохимии и микробиологии
Т.Н. Попова
подпись, расшифровка подписи
__.__.20__

УТВЕРЖДАЮ

Специальность 30.05.01 Медицинская биохимия Дисциплина Б1.В.02 Молекулярные основы развития патологических процессов Курс 4 Форма обучения очная Вид контроля экзамен Вид аттестации промежуточная

Контрольно-измерительный материал № 2

- 1. Свободные радикалы, образующиеся в биосистемах.
- 2. Структура, субклеточная локализация и свойства супероксиддисмутазы.
- 3. Свободнорадикальное окисление при заболеваниях сердечно-сосудистой системы.
- 4. При развитии экспериментального гипертиреоза в сыворотке крови крыс было выявлено увеличение параметров биохемилюминесценции и уровня диеновых коньюгатов. Введение тиоктовой кислоты приводило к изменению данных показателей в сторону показателей контрольной группы животных (норма). Предложите механизмы реализации данного протекторного эффекта. Представьте план эксперимента по оценке параметров биохемилюминесценции и уровня диеновых коньюгатов в сыворотке крови животных.

Преподаватель_		

ЛИСТ СОГЛАСОВАНИЯ С РАБОТОДАТЕЛЕМ

Юридический	адрес:	394026, Воронежская	область, город
Воронеж, Электросигнальн	ая улица, 1, od	рис 39	
Телефон: 2 (473) :	204-52-52		
Документация, пр	едставленная	<mark>я для ознакомления:</mark> раб	очий учебный план по
направлению подготовки 30	0.05.01 Медиці	инская биохимия	
Документация, п	редставленна	ая для согласования:	рабочая программа
дисциплины Б1.В.02 Мс	лекулярные с	основы развития патолог	гических процессов с
указанием нормативных	сроков осво	ения дисциплины и с	одержания отчетной
документации			
Заключение о	согласовании	ı: рабочая программа	дисциплины Б1.В.02
Молекулярные основы разв	вития патологи	ческих процессов соответ	ствует
1. ФГОС			
2. Запросам работо	одателя.		
СОГЛАСОВАНО		А.В. Минаков, директор по	персоналу
			20
			NATT.
			МП

Общие сведении об организации-работодателе: ООО «МедЭксперт»